Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Oceans ; 127(7): e2021JC018338, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36245950

RESUMO

We identified anomalously warm sea surface temperature (SST) events during 1980-2019 near the major upwelling center at Punta Lavapié in the central Chile-Peru Current System, using the European Centre for Medium-Range Weather Forecasts reanalysis and focusing on time scales of 10 days to 6 months. Extreme warm SST anomalies on these time scales mostly occurred in the austral summer, December through February, and had spatial scales of 1000s of km. By compositing over the 37 most extreme warm events, we estimated terms in a heat budget for the ocean surface mixed layer at the times of strongest warming preceding the events. The net surface heat flux anomaly is too small to explain the anomalous warming, even when allowing for uncertainty in mixed-layer depth. The composite mean anomaly of wind stress, from satellite ocean vector wind swath data, during the 37 anomalous warming periods has a spatial pattern similar to the resulting warm SST anomalies, analogous to previous studies in the California Current System. The weakened surface wind stress suggests reduced entrainment of cold water from below the mixed layer. Within 100-200 km of the coast, the typical upwelling-favorable wind stress curl decreases, suggesting reduced upwelling of cold water. In a 1000-km area of anomalous warming offshore, the typical downwelling-favorable wind stress curl also decreases, implying reduced downward Ekman pumping, which would allow mixed-layer shoaling and amplify the effect of the positive climatological summertime net surface heat flux.

2.
J Phys Oceanogr ; 39: 915-933, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28979050

RESUMO

The temporal response of the length of a partially-mixed estuary to changes in freshwater discharge, Qf , and tidal amplitude, UT , is studied using a 108 day time series collected along the length of the Hudson River estuary in the spring and summer of 2004 and a long-term (13.4 year) record of Qf , UT , and near-surface salinity. When Qf was moderately high, the tidally-averaged length of the estuary, L5, here defined as the distance from the mouth to the up-estuary location where the vertically-averaged salinity is five psu, fluctuated by more than 47 km over the spring-neap cycle, ranging from 28 km to >75 km. During low flow periods, L5 varied very little over the spring-neap cycle and approached a steady length. The response is quantified and compared to predictions of a linearized model derived from the global estuarine salt balance. The model is forced by fluctuations in Qf and UT relative to average discharge, Qo, and tidal amplitude, UTo, and predicts the linear response time scale, τ, and the steady-state length, Lo, for average forcing. Two vertical mixing schemes are considered, in which a) mixing is proportional to UT and b) dependence of mixing on stratification is also parameterized. Based on least-squares fits between L5 and estuary length predicted by the model, estimated τ varied by an order of magnitude from a period of high average discharge (Qo = 750 m3s-1, τ = 4.2 days) to a period of low discharge (Qo = 170 m3s-1, τ = 40.4 days). Over the range of observed discharge, Lo ∝ Qo-0.30±0.03, consistent with the theoretical scaling for an estuary whose landward salt flux is driven by vertical estuarine exchange circulation. Estimated τ was proportional to the discharge advection time scale (LoA/Qo, where A is the cross-sectional area of the estuary). However, τ was three to four times larger than the theoretical prediction. The model with stratification dependent mixing predicted variations in L5 with higher skill than the model with mixing proportional to UT . This model provides insight into the time dependent response of a partially-stratified estuary to changes in forcing and explains the strong dependence of the amplitude of the spring-neap response on freshwater discharge. However, the utility of the linear model is limited because it assumes a uniform channel and because the underlying dynamics are nonlinear and the forcing, Qf and UT , can undergo large amplitude variations. River discharge, in particular, can vary by over an order of magnitude over timescales comparable to or shorter than the response timescale of the estuary.

3.
Environ Health ; 7 Suppl 2: S5, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19025676

RESUMO

Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.


Assuntos
Ecossistema , Saúde Ambiental/métodos , Eucariotos/crescimento & desenvolvimento , Eutrofização , Oceanografia/métodos , Alimentos Marinhos/microbiologia , Água do Mar/microbiologia , Animais , Surtos de Doenças/prevenção & controle , Monitoramento Ambiental/métodos , Eucariotos/microbiologia , Humanos , Modelos Biológicos , Dinâmica Populacional , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA